Unsupervised Domain Adaptation based on Text Relatedness
نویسنده
چکیده
In this paper an unsupervised approach to domain adaptation is presented, which exploits external knowledge sources in order to port a classification model into a new thematic domain. Our approach extracts a new feature set from documents of the target domain, and tries to align the new features to the original ones, by exploiting text relatedness from external knowledge sources, such as WordNet. The approach has been evaluated on the task of document classification, involving the classification of newsgroup postings into 20 news groups.
منابع مشابه
Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملTrWP: Text Relatedness using Word and Phrase Relatedness
Text is composed of words and phrases. In bag-of-word model, phrases in texts are split into words. This may discard the inner semantics of phrases which in turn may give inconsistent relatedness score between two texts. TrWP , the unsupervised text relatedness approach combines both word and phrase relatedness. The word relatedness is computed using an existing unsupervised co-occurrence based...
متن کاملImpact du degré de supervision sur l'adaptation à un domaine d'un modèle de langage à partir du Web (Impact of the level of supervision on Web-based language model domain adaptation) [in French]
Impact of the level of supervision on Web-based language model domain adaptation Domain adaptation of a language model aims at re-estimating word sequence probabilities in order to better match the peculiarities of a given broad topic of interest. To achieve this task, a common strategy consists in retrieving adaptation texts from the Internet based on a given domain-representative seed text. I...
متن کامل